
JOURNAL OF COMPUTATIONAL PHYSICS 52, 597-601 (1983) 

Note 

An Efficient Algorithm for Calculating Thrust 
in High Multiplicity Reactions* 

An efftcient way of calculating the thrust variable is presented. With this method, the CPU 
goes up approximately as N’, where N is the number of particles. 

I. INTRODUCTION 

The first order QCD matrix element for efe- + qqg diverges when the gluon is 
parallel to q or q or its energy is small. However, the cross section for events in 
which the fraction 1 - E (E < 1) of energy goes into back-to-back cones of half angle 
6 (6 < 1) is finite and reliably calculated [ 11. This means that if a gluon is parallel to 
a quark, one cares about only the sum of the energies and not the fraction of energy 
carried by each particle. Thus, if a variable depends on that fraction of energy, that 
variable is not well defined in current QCD. Such a variable is called infrared 
instable. For example, thrust is an infrared stable variable, but sphericity is not. This 
is a big merit of thrust over sphericity.’ 

However, the difftculty of using thrust has been that the calculation time goes up 
as 2”, where N is the number of particles, and it becomes impractical to calculate 
thrust for high multiplicity events. In the following sections the 2N method will be 
shown to be correct; then its equivalence to the method which goes up as N2 will be 
presented together with the algorithm. 

II. 2N METHOD 

For any set of momentums {Pi) i = 1 ,..., N, the thrust T is defined as [5 ] 

T= ma%,iS) Ci ICI I 

CiIpiI ’ 
(1) 

* Supported by the U.S. Department of Energy under Contract No. DE-AC-03.76ER00068, San 
Francisco Operations Office. 

r There exists a variable which is almost like sphericity and linear in momentum. One can use matrix 
diagonalization method for this variable and calculate a set of other variables just as in the case of 
Sphericity 12, 3 1. Fox-Wolfram moment are also infra-red stable and easy to calculate 14 1. 
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where P’;, is the component along a certain axis and the maximum is taken over all 
the orientations of the axis. 

The problem is to find an axis which maximizes xi IPf, 1. To do this, one takes a 
set of signs (si} i= l,..., N (si = + 1 or -1) and forms lCisiPiI for all sign 
combinations {s;). Then the following equation holds: 

max IssiP’ 
I I lsil i 

= max \‘ IPi,\. 
(axis) 7 

(2) 

Proof: First, let {sp} be the set of signs which maximizes /xi siPil. Then one can 
show that 

where Pf, is the component along the vector xi spP’ (-PO). Namely, for {sp), each 
momentum is contributing positively to I xi spP’ I. The reason is that if there is any Pi 
which gives P” . Pi < 0, th en reversing the sign of that vector gives a longer CisiPi, 
which contradicts with the assumption that the set (sp} gives maximum length. 

Therefore, 

max \‘ siPi 
ISil I Ii 7 

==I lPf,i < max \’ lPf,I. 
(axis) f 

where the parallel component is taken along P” (--CispPi) in the expression in the 
middle. 

On the other hand, for the axis which maximizes xi / P’[, / (namely, the thrust axis), 
we form the particular set of signs {ST} which satisfies the equation 

where sf is defined by IPi,,I = srPiI1., and the symbol (If indicates that the parallel 
components are taken along the thrust axis. 

Then, since {sr} is just a special case of {si}, 

From (3) and (4), (2) is proven. Thus, if one takes all the combination (si} and 
finds a set {sp} which maximizes [xi siPi j, then the thrust is given by 

(5) 

and the thrust axis is along 

x SPP’. (6) 
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With this method, the number of possible sign combinations {si} grows as 2N, and 
when the number of particles becomes more than -20, the calculation becomes prac- 
tically impossible. 

III. N* METHOD 

Actually, one does not have to take all sign combinations. For example, if any 3 
vectors are assigned + signs, then any vector inside the back-to-back triangular cones 
formed by 3 lines along these 3 vectors has its sign already determined. As shown 
below, one can restrict oneself to “plane-separable” subsets of (si} (Fig. 1). Namely, 
if one takes a plane that goes through the origin, and assigns + to vectors on one side 
of the plane and - to others, one gets a subset of general {si}, which we denote by 
{si). Since {ST} in Section II is obviously particular case of {sl}, formula (4) holds as 
well for {sl}, i.e., 

To count the ways the plane separates the momenta, take the normal vector n to 
that plane at the origin, and assume that one assignes + to Pi if n . Pi > 0, and - if 
n . Pi < 0. Or equivalently, for a vector Pi which is fixed in space, if n is in the 
hemisphere of n . Pi > 0, then Pi is assigned +. This way the unit sphere of n can be 
divided into two hemispheres by a circle Ci with its direction defined right-handedly, 
i.e., if n is to the “left” of Ci, Pi is assigned + (Fig. 2). 

If one draws N grand circles for N particles, there will be many patches on the unit 
sphere divided by these lines. Figure 3 shows an example for N = 3. Since n has to 
cross a line to change the sign of any particle, the sign combination is well defined 
and unique as long as n stays in a single patch. Thus, each patch uniquely 
corresponds to each plane-separable sign combination. 

FIGURE 1 
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FIGURE 2 

How many patches are there? This itself is an interesting mathematical problem, 
but it is easy to set an upper limit. Since each of the N rings intersects with N - 1 
other rings at two points, there are 2N(N - 1) points on the sphere. Each point 
contributes to four patches and generally each patch needs at least three points, so 
that the upper limit is 

;N(N - 1). 

Note that these patches are paired. For a patch there is a patch of exactly the same 
shape on the opposite side of the sphere. This corresponds to reversing the sign of all 
momenta. Thus, the upper limit of independent patches is one half of the above 
number, i.e., 

+N(N - 1). 

FIGURE 3 
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Now having shown that the number of sign combinations actually grows as N*, we 
have to go through every sign combination to actually calculate the thrust variable. 
Since it is much easier to lind intersections than patches themselves, let us start with 
intersecting points. 

If n is on the intersection of Ci and Cj, everything else except Pi and Pj have well- 
defined signs. The direction of the intersection is given by Pi x P’, and Pk (k # i, j) is 
assigned the sign of Pk . (Pi x Pj). Note that taking only one of 2 intersections of 
Ci, Cj is enough. For Pi and Pj, all possible combinations of signs are taken. This 
makes 4 combinations {si} for each independent intersection. 

This way one exhausts all patches, when one goes through all intersections. But 
there are multiple countings. A triangular patch will be counted 3 times, a 
quadrangular patch 4 times, etc. However, this is not as inefficient as it looks, since 
when one calculates JJi siPi for 4 sign combinations of (i, j), one does not have to 
recalculate except for momentum i and j. 

The algorithm is very simple, and is as follows: 
Loop over all combinations (i, j) with i > j, and each time set signs sk (k # f, j) to 

be the sign of Pk . (Pi X Pj) and for sir sj take all 4 combinations. For each set of 
sign combinations, calclate [xi siPi and check the maximum. 

If {sp} gives the maximum, the thrust and its axis are given by (5), (6) respec- 
tively. 

The algorithm itself can be arrived at more directly, viewing that any plane which 
separates the momentum vectors into two groups can be moved without changing any 
sign-namely, without crossing any momentum vector-to the state that it is almost 
touching two momentum vectors, and this state is obviously covered by the 
algorithms described above. 
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